Saturday, 24 February 2018

지수 이동 평균 수익률


단순 이동 평균 - SMA. 이동 평균 단순 이동 - SMA. A 단순 이동 평균은 여러 기간에 대해 보안의 마감 가격을 추가하여 다른 기간 수에 대해 계산할 수 있다는 점에서 사용자 정의 할 수 있습니다. 이 총계를 기간별 보안 비용의 평균값으로 나눈 시간의 합계로 나누십시오. 단순 이동 평균은 변동성을 완화시키고 보안의 가격 추세를보다 쉽게 ​​볼 수 있습니다. 단순 이동 평균이 , 이는 보안의 가격이 상승하고 있음을 의미합니다. 아래로 향하면 보안의 가격이 하락하고 있음을 의미합니다. 이동 평균의 시간이 길수록 단순한 이동 평균이 더 짧음 단기 이동 평균은 변동성이 크지 만 그것의 독서는 근원 자료에 더 가깝습니다. 분석적 중요성. 이동 평균은 현재의 가격 추세와 확립 된 tre의 변화 가능성을 확인하는 데 사용되는 중요한 분석 도구입니다 분석에서 단순 이동 평균을 사용하는 가장 간단한 형태는 보안이 상승 추세 또는 하락 추세에 있는지를 신속하게 식별하는 것입니다. 약간 더 복잡한 분석 도구에도 불구하고 또 다른 보편적 인 이동 평균을 비교하여 시간 프레임 단기 단기 이동 평균이 장기 평균보다 높으면 상승 경향이 있습니다. 반면 단기 평균보다 장기 평균은 추세에서 하향 움직임을 나타냅니다. 인기 거래 패턴. 간단한 이동 평균을 사용하는 두 가지 인기있는 거래 패턴에는 죽음의 십자가와 십자가가 포함됩니다. 50 일 이동 평균이 200 일 이동 평균을 밑돌면 죽음의 십자가가 생깁니다 이것은 곰 같은 신호로 간주되어 추가 손실이 저장됩니다 황금의 십자가는 단기 이동 평균이 장기 이동 평균보다 높을 때 발생합니다. 높은 거래량으로 보강되면 더 많은 이익이 창출 될 것입니다. 지수 함수 적으로 살펴 봅니다. 가중 이동 평균. 가변성은 위험의 가장 일반적인 측정이지만 여러 가지 형태로 제공됩니다. 이전 기사에서 간단한 과거 변동성을 계산하는 방법을 보여주었습니다. 이 기사를 읽으려면 변동성을 사용하여 미래 위험을 측정하십시오. Google의 실제 주식 주가 데이터 30 일을 기준으로 일별 변동성을 계산하기위한 가격 데이터이 기사에서는 단순 변동성을 개선하고 지수 가중 이동 평균 EWMA에 대해 논의합니다. 역사적 Vs 내재 변동성 먼저이 메트릭을 약간의 관점으로 보겠습니다. 역사적, 암시 적 또는 암묵적 변동성에 대한 두 가지 광범위한 접근 방식 역사적 접근법은 과거가 프롤로그 (prologue)라고 가정하고 예측을 희망하는 역사를 측정합니다. 반면에 묵시적인 변동성은 시장 가격이 암시하는 변동성에 대해 해결하는 역사를 무시합니다. 시장은 가장 잘 알고 있으며 암시 적으로 시장 가격에는 변동성의 합의 추정치가 포함되어있다. 휘발성의 사용과 한계. 위 왼쪽의 세 가지 역사적인 접근 방법에 초점을 맞추면 두 단계가 공통점을 갖습니다. 주기적인 수익률을 계산합니다. 가중치 적용 방식을 사용합니다. 먼저 주기적 수익을 계산합니다. 각각의 수익이 계속 복합적으로 표현되는 일련의 일일 수익률 매일 매일 주가의 비율 즉, 오늘의 주가를 어제 가격으로 나눈 순 비율을 자연 로그로 취합니다. 이로 인해 다음과 같은 일련의 일일 수익이 발생합니다. 우리가 측정하는 일수에 따라 u가 될 것입니다. 그것은 두 번째 단계로 나아갑니다. 이것은 세 가지 접근 방식이 다른 곳입니다. 이전 기사에서 미래의 위험을 측정하기 위해 변동성 사용하기, 몇 가지 허용되는 단순화 아래에서, 단순한 분산은 제곱 된 수익의 평균입니다. 이것은주기적인 수익의 각각을 합한 다음 그 총을 일 또는 관측치의 수로 나눕니다. 따라서 실제로는 제곱의 평균입니다 주기적인 수익률 다른 방법으로 각 제곱 수익률에 동등한 가중치가 부여됩니다. 따라서 α가 가중치 요소 인 경우 1m이면 간단한 분산은 다음과 같습니다. 단순 분산에 대한 EWMA 개선이 접근법의 약점은 모든 수익률은 같은 가중치를 얻습니다. 어제의 최근 수익률은 지난 달 수익률보다 분산에 더 이상 영향을 미치지 않습니다. 이 문제는 지수 가중 이동 평균 EWMA를 사용하여 수정됩니다. 최근 수익률은 분산에 더 큰 가중치를가집니다. 가중 이동 평균 EWMA는 평활화 매개 변수 라 불리는 람다를 도입합니다. 람다는 1보다 작아야합니다. 동일한 가중치 대신에 각 제곱 된 수익률은 다음과 같이 승수로 가중치가 적용됩니다. 예 : RiskMetrics TM, 재무 위험 관리 회사, 0 94 또는 94의 람다를 사용하는 경향이 있습니다. 이 경우 가장 최근의 제곱 된 주기적 수익은 1-0으로 가중됩니다. 94 94 0 다음 제곱 수익은 간단합니다 이 경우 6의 이전 무게의 람다 배수 94 5 64 그리고 3 번째 이전 날 무게는 1-0 94 0 94 2 5 30과 같습니다. EWMA에서 지수의 의미는 각 가중치가 상수 승수 즉 람다는 이전 날짜의 무게보다 작아야합니다. 이것은 최근 데이터로 가중되거나 편향된 분산을 보장합니다. 자세한 내용은 Google 워크 시트에서 확인할 수 있습니다. 변동성 Google의 변동성과 EWMA의 차이는 간단한 변동성은 0과 196의 각각의주기적인 수익률에 영향을 미친다. 우리는 2 년의 일일 주가 데이터를 가지고있다. 이는 일일 평균 수익률 509와 1 509 0 196이다. 그러나 열 P는 6의 가중치를 할당하고, 다음은 단순한 분산과 EWMA의 유일한 차이입니다. 기억하기 열 Q의 전체 계열을 합한 후에 표준 편차의 제곱 인 분산을 구합니다. 변동성을 원한다면 sq를 기억할 필요가있다. 그 변화의 근원입니다. 구글의 경우 분산과 EWMA 사이의 일별 변동성은 무엇입니까? 중요합니다. 간단한 분산은 우리에게 매일 2/4의 변동성을 주었지만, EWMA는 일일 변동성을 단지 1 4로 나타 냈습니다. 스프레드 시트 참조 자세한 내용은 분명히 Google의 변동성이 더 최근에 정해지기 때문에 단순한 분산은 인위적으로 높을 수 있습니다. 오늘의 분산은 Pior의 분산의 함수입니다. 우리는 기하 급수적으로 감소하는 긴 일련의 무게를 계산해야했습니다. 여기서 수학이지만 EWMA의 가장 좋은 기능 중 하나는 전체 시리즈가 편리하게 재귀 수식으로 감소한다는 것입니다. 재 표현은 오늘날의 분산 참조가 즉 이전 날짜의 분산의 함수라는 것을 의미합니다. 이 수식은 스프레드 시트에서 찾을 수 있습니다 또한, 그것은 전두환 계산과 똑같은 결과를 산출합니다. EWMA 하에서의 오늘날의 분산은 람다와 어제의 제곱의 가중치에 의해 가중 된 어제의 분산과 같습니다. 빼기 람다 어제 우리는 어제 가중치 분산과 어제 가중치, 제곱 수익을 함께 사용하여 두 용어를 더하는 방법에 주목하십시오. 람다는 우리의 평활화 매개 변수입니다. 예를 들어 RiskMetric s 94와 같은 더 높은 람다는 상대적으로 느린 붕괴를 나타냅니다. 시리즈에서 더 많은 데이터 포인트를 갖게 될 것이고 더 느리게 떨어질 것입니다. 반면에, 우리가 람다를 줄이면, 더 빠른 감쇠의 직접적인 결과로서, 더 빨리 감쇠하는 더 높은 감쇠를 나타냅니다. 적은 수의 데이터 포인트가 사용됩니다 스프레드 시트에서 람다는 입력이므로 민감도를 실험 할 수 있습니다. 순간 변동성은 주식의 순간 표준 편차와 가장 일반적인 위험 메트릭입니다. 또한 분산의 제곱근입니다 분산은 역사적으로나 암시 적으로 변동성을 내포합니다. 역사적으로 측정 할 때, 가장 쉬운 방법은 단순한 분산입니다. 그러나 단순한 분산의 약점은 모든 수익률이 같은 가중치가됩니다. 그래서 우리는 고전적인 t rade-off 우리는 항상 더 많은 데이터를 원하지만 더 많은 데이터를 얻으려면 더 많은 계산이 필요합니다. 더 적은 관련 데이터로 희석됩니다. 지수 가중 이동 평균 EWMA는주기적인 수익에 가중치를 할당하여 간단한 분산을 향상시킵니다. 이렇게함으로써 우리는 큰 표본 크기이지만 최근 수익에 더 큰 비중을 부여합니다. 이 주제에 대한 동영상 자습서를 보려면 Bionic Turtle. Moving 평균 및 지수 평활화 모델을 방문하십시오. 평균 모델, 무작위 걸음 모델 및 선형 경향 모델을 넘어서는 첫 번째 단계로 비 계절적 패턴 및 추세는 이동식 평균 또는 평활화 모델 평균화 및 평활화 모델의 기본 가정은 시계열이 천천히 변하는 평균으로 국부적으로 고정된다는 것입니다. 따라서 평균의 현재 값을 추정하기 위해 이동하는 지역 평균을 취한 다음이를 가까운 미래 이것은 평균 모델과 드리프트없는 무작위 모델 간의 절충으로 간주 될 수 있습니다. 동일한 전략을 사용하여 로컬 경향을 추정하고 추정 할 수 있습니다. 이동 평균은 흔히 원본의 평활화 된 버전이라고합니다 시리즈는 단기 평균화가 원래 시리즈의 범프를 부드럽게하는 효과가 있기 때문에 이동 평균의 너비를 부드럽게하는 정도를 조정하여 파업을 기대할 수 있습니다 평균 무작위 걸음 모델의 성능 사이의 최적 균형 종류 평균화 모델의 가장 단순한 종류는 단순한 가중 이동 평균입니다. 시간 t에서 Y 값이 시간 t에 대해 예측되는 것은 가장 최근의 m 관측치의 단순 평균. 여기 그리고 다른 곳에서 주어진 모델에 의해 가능한 가장 빠른 이전 날짜에 만들어진 시계열 Y의 예측을 나타 내기 위해 기호 Y-hat을 사용할 것입니다. 이 평균은 t-1 2에 집중되어 있습니다. 지역 평균은 국부 평균의 실제 값보다 약 m 2주기 늦어지는 경향이있다. 따라서 단순 이동 평균의 데이터의 평균 연령은 예측이 계산되는 기간에 비해 m 2이다 이것은 예측이 데이터의 전환점보다 뒤쳐지는 경향이있는 시간입니다. 예를 들어, 마지막 5 개의 값을 평균 할 경우 예측은 전환점에 응답하는 데 약 3 기간 늦을 것입니다. m 1, 단순 이동 평균 SMA 모델은 성장없는 무작위 도보 모델과 동일합니다. m이 추정 기간의 길이와 비교할 때 매우 큰 경우 SMA 모델은 평균 모델과 같습니다. 예측 모델의 모든 매개 변수와 마찬가지로 관례입니다 기의 가치를 조정하는 n 순서에 따라 데이터에 가장 잘 맞는 것을 얻습니다. 즉 평균적으로 가장 작은 예측 오류입니다. 천천히 변하는 평균 주위의 무작위 변동을 나타내는 시리즈의 예가 있습니다. 먼저 임의의 보행에 맞춰 봅니다. 모델로, 1 기간의 간단한 이동 평균과 같습니다. 랜덤 워크 모델은 시리즈의 변경 사항에 매우 신속하게 응답하지만, 이렇게하면 데이터의 노이즈가 많은 부분을 비롯하여 임의의 변동 및 신호가 로컬에서 발생합니다 평균 대신 5 용어의 간단한 이동 평균을 시도하면 우리는보다 매끄러운 예측 세트를 얻습니다. 이 용어의 무작위 도보 모델보다 5 term 간단한 이동 평균이 훨씬 적은 오류를 산출합니다. 예측은 3 5 1 2이므로 전환 시점보다 3 기간 지연되는 경향이 있습니다. 예를 들어, 기간 21에 침체가 발생한 것으로 보이지만 몇 기간 후에 예측이 돌아 가지 않습니다. SMA 모드에서의 장기 예측 el은 임의의 보행 모델에서와 같이 수평의 직선이다. 따라서 SMA 모델은 데이터에 추세가 없다고 가정한다. 그러나 무작위 걸음 모델의 예측은 단순히 마지막으로 관측 된 값과 동일하지만, SMA 모델은 최근 값의 가중 평균과 동일합니다. Statgraphics가 계산 한 신뢰 한계는 단순 이동 평균의 장기 예측에 대해 예측 지평선이 증가함에 따라 더 넓지 않습니다. 분명히 올바르지 않습니다. 불행히도 근본적인 원인은 없습니다 신뢰 구간을 어떻게 확장해야하는지 알려주는 통계 이론 그러나 장거리 예측에 대한 신뢰 한계의 경험적 추정치를 계산하는 것은 그리 어렵지 않습니다. 예를 들어, SMA 모델을 사용하는 스프레드 시트를 설정할 수 있습니다 이력 데이터 샘플 내에서 앞으로 2 단계, 3 단계 앞당기 등을 예측하는 데 사용됩니다. 그런 다음 각 예측에서 오류의 샘플 표준 편차를 계산할 수 있습니다. h orzone을 선택하고 적절한 표준 편차의 배수를 더하거나 뺍으로써 장기 예측에 대한 신뢰 구간을 구축하십시오. 우리가 9 항의 간단한 이동 평균을 시도하면보다 부드러운 예측과 지연 효과를 얻을 수 있습니다. 평균 연령은 현재 5 개 기간 9 1 2 19 개 이동 평균을 취하면 평균 연령이 10 세로 증가합니다. 실제로 예측은 현재 약 10 기간으로 전환점보다 뒤떨어져 있습니다. 이 시리즈의 경우 스무딩 양이 가장 좋습니다. 다음은 3 학기 평균을 포함하여 오류 통계를 비교하는 표입니다. 5 학기 이동 평균 인 모델 C는 3 학기 및 9 학기 평균보다 약간 작은 RMSE 값을 산출하고 그들의 다른 통계는 거의 동일합니다. 따라서 매우 유사한 오류 통계를 가진 모델 중에서 예측에서 조금 더 응답 성을 높이거나 좀 더 부드러움을 선호할지 여부를 선택할 수 있습니다. 페이지 위쪽으로 돌아갑니다. 단순 지수 기수 평준화 지수 가중치 위에서 설명한 단순 이동 평균 모델은 마지막 k 관측 값을 똑같이 처리하고 이전 관측 값을 완전히 무시한다는 바람직하지 않은 특성을 가지고 있습니다. 직관적으로 과거 데이터는보다 점진적인 방식으로 할인되어야합니다. 예를 들어 가장 최근 관측 값은 가장 최근의 것보다 조금 더 많은 가중치를 얻으십시오. 가장 최근의 두 번째 것은 가장 최근의 세 번째 것보다 약간 더 많은 가중치를가집니다. 간단한 지수 스무딩 SES 모델은 this를 수행합니다. 0과 1 사이의 수를 나타내는 평활 상수를 나타냅니다. 모델을 작성하는 한 가지 방법은 현재 레벨, 즉 데이터에서 현재까지 추정 된 일련의 로컬 평균 값을 나타내는 계열 L을 정의하는 것입니다. 시간 t에서 L의 값은 이와 같이 이전의 자체 값에서 재귀 적으로 계산됩니다. 따라서, 현재의 평활화 된 값은 이전의 평활화 된 값과 현재의 관찰 사이의 보간법이며, 여기서 가장 보간 된 값에 대한 보간 된 값의 근접성을 제어한다 센티미터 관측 다음 기간에 대한 예측은 단순히 현재의 평활화 된 값입니다. 또한, 다음과 같은 버전의 이전 예측 및 이전 관측과 관련하여 다음 예측을 직접 표현할 수 있습니다. 첫 번째 버전에서 예측은 보간 두 번째 버전에서는 이전 오류의 방향으로 이전 예측을 분수로 조정하여 다음 예측을 얻습니다. 시간 t에서 발생한 오류는 세 번째 버전에서 예측은 지수 가중치, 즉 할인율 1로 할인 된 이동 평균 예측 공식의 보간 버전은 스프레드 시트에서 모델을 구현하는 경우 가장 단순합니다. 이 모델은 단일 셀에 적합하고 이전 예측을 가리키는 셀 참조를 포함합니다. 관측치, 값이 저장되는 셀 등이 있습니다. 1이면 SES 모델이 무작위 도보 모델과 같습니다. hout growth 0 일 경우 SES 모델은 첫 번째 평활 값이 평균 페이지 상단으로 돌아 가기로 설정되었다고 가정하고 평균 모델과 같습니다. 단순 지수 평활화 예측의 데이터 평균 나이는 1입니다. 예측이 계산되는 기간이 기간은 분명하지는 않으나 무한 시리즈를 평가하여 쉽게 표시 할 수 있습니다. 따라서 단순 이동 평균 예측은 전환 시점보다 약 1 기간 지연되는 경향이 있습니다. 예를 들어, 0 5 지연은 0 2 지연이 10주기 인 0 일 때 5주기 인 등 2주기입니다. 주어진 평균 연령 즉 지연의 양에 대해 간단한 지수 스무딩 SES 예측은 단순 이동보다 다소 우수합니다 평균 SMA 예측은 가장 최근의 관찰에 상대적으로 더 많은 가중치를 부여하기 때문입니다 - 최근 과거에 발생한 변화에 약간 더 반응합니다. 예를 들어, 9 개의 용어가있는 SMA 모델과 0 2가있는 SES 모델 모두 평균 연령 5에 대한 다 그러나 SES 모델은 SMA 모델보다 세 번째 값에 더 많은 가중치를 주지만 동시에이 차트에 표시된 바와 같이 9 시간보다 오래된 값을 완전히 잊지는 않습니다. SMA 모델의 SES 모델은 SES 모델이 지속적으로 가변적 인 스무딩 매개 변수를 사용하므로 평균 제곱 오류를 최소화하기위한 솔버 알고리즘을 사용하여 쉽게 최적화 할 수 있습니다. 이 시리즈의 SES 모델에서 최적 값은 이 예측에서 데이터의 평균 연령은 6 개월 간단한 이동 평균과 비슷한 1 0 2961 3 4 마침표입니다. SES 모델의 장기 예측은 다음과 같습니다. SMA 모델과 성장없는 무작위 걸음 모델과 같은 수평 직선 그러나 Statgraphics에 의해 계산 된 신뢰 구간은 합리적으로 보이는 방식으로 이제는 발산하고 rand에 대한 신뢰 구간보다 실질적으로 좁은 것을 유의하십시오 옴 워크 모델 SES 모델은 무작위 걸음 모델보다 일련이 더 예측 가능하다고 가정합니다. SES 모델은 실제로 ARIMA 모델의 특수 사례이므로 ARIMA 모델의 통계 이론은 SES 모델 특히, SES 모델은 하나의 비 계절적 차이, MA 1 용어 및 상수 용어가없는 ARIMA 모델입니다. 상수가없는 ARIMA 0,1,1 모델 ARIMA 모델의 MA 1 계수는 수량 1 - SES 모델 예를 들어, 여기서 분석 한 시리즈에 상수가없는 ARIMA 0,1,1 모델을 맞춘 경우 MA 1 계수 추정치는 0 7029로 거의 정확히 1에서 0 2961입니다. 0이 아닌 일정한 선형 추세의 가정을 SES 모델에 추가하는 것이 가능합니다. 이렇게하려면 비 계절 차이가 하나 있고 상수가 MA 1 인 ARIMA 모델, 즉 ARIMA 0,1,1 모델을 지정하면됩니다 일정한 장기 전망 전체 견적 기간 동안 관측 된 평균 추세와 같은 추세를 가짐 모델 유형이 ARIMA로 설정된 경우 계절 조정 옵션이 사용 불가능하기 때문에 계절 조정과 함께 할 수는 없습니다. 그러나 일정 길이를 추가 할 수 있습니다 예측 과정에서 인플레이션 조정 옵션을 사용하여 계절 조정이 있거나없는 단순한 지수 평활화 모델로의 지수 기하학 기간 당 적절한 인플레이션 비율 증가율은 다음과 같은 데이터에 맞는 선형 추세 모델의 기울기 계수로 추정 할 수 있습니다. 자연 로그 변환과 함께 사용하거나 장기 성장 전망에 관한 다른 독립적 인 정보를 기반으로 할 수 있습니다. 맨 위로 돌아 가기. Brown s Linear 즉 double Exponential Smoothing. SMA 모델과 SES 모델은 다음과 같은 추세가 없다고 가정합니다. 데이터가 상대적으로 노우즈 일 때 1 단계 전방 예측에 대해 일반적으로 정상이거나 적어도 좋지는 않은 데이터의 모든 종류 sy와 같으며 위에서 보인 바와 같이 일정한 선형 추세를 통합하도록 수정할 수 있습니다 단기간 추세는 무엇인가 시리즈가 다양한 성장 속도 또는 순환 패턴을 명확하게 나타내며 소음에 대해 분명하게 나타낼 경우 앞으로 1 기간 이상 예측할 경우 지역 경향을 추정하는 것도 중요한 문제가 될 수 있습니다. 간단한 지수 평활화 모델을 일반화하여 수준 및 추세에 대한 지역 추정치를 계산하는 선형 지수 평활화 LES 모델을 얻을 수 있습니다. 가장 간단한 시간 변화 추세 모델은 Brown s 선형 지수 평활화 모델로, 서로 다른 시점에 집중되는 두 개의 다른 매끄러운 계열을 사용합니다. 예측 공식은 두 센터를 통한 선 외삽을 기반으로합니다. 이 모델의보다 정교한 버전 인 Holt s는 다음과 같습니다. 브라운의 선형 지수 평활화 모델의 대수적 형태는 단순한 지수 평활화 모델의 것과 유사하지만 여러 가지로 표현 될 수 있지만 e quivalent forms이 모델의 표준 형태는 보통 다음과 같이 표현된다. S는 간단한 지수 스무딩을 계열 Y에 적용하여 얻은 단일 평활 연속열을 나타냅니다. 즉, 기간 t에서의 S 값은로 주어집니다. 간단한 지수 적 평활화 하에서, 이것은 기간 t 1에서의 Y에 대한 예측이 될 것임을 상기하자. S는 시리즈 S와 동일한 지수 평활화를 적용함으로써 얻어진 이중 평활 연속열을 나타낸다. 최종적으로, 임의의 것에 대한 Y tk에 대한 예측 k1은 다음과 같이 주어진다. 이것은 e1 0 즉, 약간의 속임수를 낳고 첫 번째 예측을 실제 첫 번째 관찰과 같게 만들고 e2 Y2 Y1 후에 위의 등식을 사용하여 예측을 생성한다. S와 S를 기반으로 한 수식은 S 1 S 1 Y 1을 사용하여 시작됩니다. 이 모델의 버전은 지수 조정과 계절 조정의 조합을 보여주는 다음 페이지에서 사용됩니다. 선형의 선형 지수 스무딩. 브러시 LES 모델은 최근 데이터를 평활화하여 레벨 및 추세에 대한 지역 추정치를 계산하지만, 단일 스무딩 매개 변수를 사용하여이를 수행한다는 사실은 레벨에 맞출 수있는 데이터 패턴에 대한 제한을 두며 추세가 달라지지 않도록합니다 ~에서 독립 속도 Holt s LES 모델은 두 개의 평활 상수를 하나의 레벨과 추세에 포함시켜이 문제를 해결합니다. Brown s 모델에서와 같이 언제든지 t는 지역 수준의 추정치 L t와 추정치 T가 있습니다 여기서 t는 시간 t에서 관측 된 Y의 값과 그것들에 대해 지수 평활을 적용하는 두 방정식에 의한 이전의 추정치와 추세로부터 재귀 적으로 계산된다. 시간 t-1에서의 추정 된 수준과 경향 가 각각 t 1 및 t t-1 인 경우, 시간 t-1에서 이루어진 Y t에 대한 예측은 L t-1 T t-1과 동일하다. 실제 값이 관찰 될 때, 레벨은 Y t와 그 예측 L t-1 T t-1 사이의 가중치와 1을 사용하여 보간법에 의해 재귀 적으로 계산된다. 추정 된 레벨의 변화, 즉 L t L t 1은 트렌드의 추세 업데이트 된 트렌드 추정치는 L 사이의 보간법에 의해 재귀 적으로 계산됩니다 t L t 1과 가중치 1의 이전 추정치 T t-1. 경향 평활화 상수의 해석은 수준 평활화 상수의 해석과 유사합니다. 작은 값을 갖는 모델은 추세가 변하는 것으로 가정합니다 시간이 지남에 따라 서서히 느리게 만 진행되는 반면, 큰 모델은 더 빠르게 변하는 것으로 가정합니다. 큰 모델은 미래의 예측이 매우 불확실하다고 믿습니다. 추세 예측의 오류는 앞으로 1 년 이상 예측할 때 매우 중요합니다. 평활화 상수는 1 단계 사전 예측의 평균 제곱 오차를 최소화함으로써 일반적인 방법으로 추정 할 수 있습니다. Statgraphics에서이를 수행하면 추정값은 0 3048 및 0 008으로 나타납니다. 모델이 한 기간에서 다음 기간으로의 추세에 거의 변화가 없다는 것을 의미하므로 기본적으로이 모델은 장기 추세를 추정하려고합니다. t를 추정하는 데 사용되는 데이터의 평균 연령 개념과 유사합니다 그 시리즈의 지역 수준, 지역 추세를 추정하는데 사용되는 데이터의 평균 연령은 정확히 1과 비례하지 만 1에 비례합니다. 이 경우 1 0 006 125 이것은 매우 정확한 숫자입니다 추정치의 정확도가 실제로 소수점 세 자리까지 오지는 않지만 표본 크기가 100 인 것과 동일한 일반적인 순서이기 때문에이 모델은 추세를 추정하는 데 상당히 많은 역사를 평균합니다 예측 기획 아래에서 LES 모델은 SES 추세 모델에서 추정 된 일정 추세보다 시리즈 마지막 부분에서 약간 더 큰 국소 추세를 추정한다는 것을 보여줍니다. 또한 추산 값은 SES 모델을 추세와 함께 또는 축없이 맞추어 얻은 값과 거의 같습니다 그래서 이것은 거의 동일한 모델입니다. 자, 지역 경향을 예측할 것으로 예상되는 모델에 대한 합리적인 예측처럼 보입니까? 이 플롯에 안구를 찍은 경우, 지역 경향이 끝 부분에서 아래쪽으로 향한 것처럼 보입니다. 시리즈 Wh at has has happen이 모델의 매개 변수는 장기 예측이 아닌 1 단계 앞선 예측의 제곱 오류를 최소화하여 추정되었습니다. 이 경우 추세는 많은 차이를 만듭니다. 보고있는 모든 것이 1 일 경우 10 단계 또는 20 단계의 추세에 대한 더 큰 그림을 볼 수 없습니다. 이 모델을 데이터의 눈알 외삽으로 더 조정하려면 추세 평활화 상수를 수동으로 조정하여 추세 예측에 더 짧은 기준선 사용 예를 들어, 0 1로 설정하면 지역 경향 추산에 사용 된 데이터의 평균 연령은 10 기간으로, 이는 지난 20 기간 동안의 경향 평균을 의미합니다 우리가 0을 1로 설정하면 예측 음모가 어떻게 생겼습니까 0 3이 시리즈는 직관적으로 합리적인 것처럼 보입니다. 향후 10 년 동안이 추세를 추정하는 것은 위험 할 수 있습니다. 오류 통계는 다음과 같습니다. 모델 비교 f 또는 위의 두 모델과 세 가지 SES 모델 SES 모델의 최적 값은 약 0 3이지만, 약간 더 반응성이 다소 적은 유사한 결과는 각각 0 5 및 0 2로 얻어집니다. 홀트의 선형 적분 평활화 알파 0 3048 및 베타 0 008 B 홀트의 선형 exp 평활화 알파 0 3 및 베타 0 1. C 단순한 지수 평활화 α 0 5. D 단순 지수 해 평활화 α 0 3. E 단순한 지수 평활화 α 0 2 . 이들 통계는 거의 동일하므로 데이터 샘플 내의 1 단계 사전 예측 오류를 기준으로 선택을 할 수 없습니다. 다른 고려 사항으로 돌아 가야합니다. 현재의 기준을 기반으로하는 것이 타당하다고 믿는다면 지난 20 개 기간 동안 일어난 일에 대한 추세 평가, 우리는 0 3과 0 1로 LES 모델에 대한 사례를 만들 수 있습니다. 지역 경향이 있는지 여부에 대해 불가지론을 원한다면 SES 모델 중 하나가 설명하기 쉽고 더 많은 middl을 줄 것이다. 다음 5 또는 10 기간에 대한 e-of-the-road 예측 페이지 맨 위로 돌아갑니다. 추세 외삽의 유형이 가장 수평 또는 선형이 가장 좋습니다. 경험적 증거에 따르면, 인플레이션에 필요한 경우 데이터가 이미 조정 된 경우 향후 단기간의 선형 추세를 추정하는 것이 현명하지 않을 수 있습니다. 제품 노후화, 경쟁 심화 및주기적인 경기 침체 또는 산업의 호황과 같은 다양한 원인으로 인해 오늘날 명백한 추세가 미래에 완화 될 수 있습니다. 스무딩은 순진한 수평 추세 외삽에도 불구하고 기대했던 것보다 더 나은 샘플 밖 샘플을 수행하는 경우가 많음 선형 지수 평활화 모델의 감쇠 추세 수정은 실제로 경향 추세에 보수주의 메모를 삽입하는 데 종종 사용됩니다. 감쇠 추세 LES 모델은 ARIMA 모델의 특별한 경우, 특히 ARIMA 1,1,2 모델로 구현 될 수 있습니다. 신뢰 구간을 계산하는 것이 가능합니다 지수 평활화 모델이 ARIMA 모델의 특수한 경우로 간주하여 장기간 예측을 생성합니다. 모든 소프트웨어가 이러한 모델에 대한 신뢰 구간을 올바르게 계산하지는 않는지 확인하십시오. 신뢰 구간의 폭은 i 모델의 RMS 오차, ii 유형 평활화의 단순화 또는 선형화 iii 평활화 상수의 값 s 및 iv 예측 전의 기간 수 일반적으로 SES 모델에서 더 커짐에 따라 간격이 더 빠르게 퍼지고 간격은 단순하지 않고 선형보다 훨씬 빠르게 퍼집니다 smoothing is used이 주제는 노트의 ARIMA 모델 섹션에서 더 자세히 논의됩니다.

No comments:

Post a Comment